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Context-F ree G rammars and Pushdown Automata 
Bill D’Alessandro—Math 503 

 
These notes draw (very!) liberally from Lewis and Papadimitriou (1981), Elements of the Theory 

of Computation, chapter 3. 
 

Catchup on Context-Free Grammars 
 
A context-free grammar G is a quadruple (𝑉,Σ,𝑅,𝑆), where 

 V is an alphabet 
 Σ (the set of terminals) is a subset of V, its elements represented by lowercase letters 
 R (the set of production rules, or just rules) is a finite subset of (V – Σ) × V* 
 S (the start symbol) is an element of V – Σ. 

 
The members of V – Σ are nonterminals, and are represented by uppercase letters. 
Production rules look like this: 𝐴 → 𝐴𝐴;  𝐴 → 𝑎𝐴;  𝐴 → 𝜀.  
 
Incidentally, this is why these grammars are called “context-free”. Consider the string 𝑎𝐴𝐴𝑏𝑎. 
We are allowed by a CFG to operate on any part of the string to which the production rules 
apply, without caring about the context of that bit of the string—that is, about the other symbols 
in its neighborhood. So, using the above rules, 𝑎𝐴𝐴𝑏𝑎 → 𝑎𝑎𝐴𝐴𝑏𝑎 ⟶ 𝑎𝑎𝐴𝑏𝑎 ⟶ 𝑎𝑎𝑏𝑎 (e.g.) is 
a legal derivation. Some grammars, the context-sensitive ones, lack this feature. In such 
grammars, “replacements may be conditioned on the existence of an appropriate context” 
(Lewis, 97). 
 
Context-free grammars do an excellent job capturing most programming languages, and a pretty 
nice job with most natural languages. (But see Shieber (1985) ["Evidence against the context-
freeness of natural language", Linguistics and Philosophy 8: 333–343] for proof that the fit in the 
latter case is imperfect.) 
 
Proposition 
All regular languages are context-free, but not all context-free languages are regular. 
 
Proof 
Phil showed last time that all regular languages are context-free. 
To see that not all CFLs are regular, consider the grammar 𝐺 = (𝑉, Σ,𝑅, 𝑆), where 𝑉 = {𝑆, 𝑎, 𝑏} 
and Σ = {𝑎,𝑏}, and R consists of the rules 𝑆 → 𝑎𝑆𝑏 and 𝑆 → 𝜀. The language generated by G 
looks like {𝜀, 𝑎𝑏,𝑎𝑎𝑏𝑏,𝑎𝑎𝑎𝑏𝑏𝑏,…}, or more succinctly 𝐿(𝐺) =  {𝑎𝑛𝑏𝑛 :𝑛 ≥ 0}. This language 
can’t be obtained from any regular expression—one would need an expression that “counts” and 
“remembers” the number of as one has written—and thus it is non-regular. ∎ 

http://www.eecs.harvard.edu/~shieber/Biblio/Papers/shieber85.pdf
http://www.eecs.harvard.edu/~shieber/Biblio/Papers/shieber85.pdf
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This result implies that some context-free languages (CFLs) are unrecognizable by finite 
automata. There is a more powerful sort of automaton, though, that can recognize arbitrary 
CFLs. Such machines are called pushdown automata. 
 
 

Schematic of a Pushdown Automaton 
 

               Input       a        b        b        a        b        b         a         b        b       … 
 
                                        Reading head      
                                                                                                                b 
                                                                                                   
                                                                                                                a     “Stack” 
                Finite 
                          control                                                                          b 
 
                                                                                                                b 
 
                                                                                                                a 
 
Description of pushdown automata 
A pushdown automaton (PDA) has, in addition to its input string, an auxiliary storage device (a 
stack). The stack can record the input string as it is read, and this record can be used for various 
purposes later. There are two ways a machine M and its stack can interact: (1) the symbol on top 
of the stack can affect M’s transitions; and (2) M can manipulate this top symbol. The latter can, 
itself, happen in two ways. M can push a symbol by adding it to the top of the stack, or it can 
pop a symbol by removing it from the top of the stack. 
 
Formally, a PDA is a sextuple 𝑀 = (𝐾, Σ, Γ,Δ, 𝑠,𝐹), where 

 K is a finite set of states 
 Σ is an alphabet (the input symbols) 
 Γ is an alphabet (the stack symbols) 
 𝑠 ∈ 𝐾 is the initial state 
 𝐹 ⊆ 𝐾 is the set of final states 
 Δ is the transition relation, a finite subset of (𝐾 × Σ∗ × Γ∗) × (𝐾 × Γ∗) 

 
Δ looks daunting, but on inspection it is seen to be rather tame. A member of Δ has the form 
((𝑝, 𝑢,𝛽), (𝑞, 𝛾)) and is called a transition of the machine M. Intuitively, the transition says that 
M, whenever it is in state p with β at the top of the stack, may read u from the input tape, replace 
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β by γ on the top of the stack, and enter state q. (Since several transitions may be legal for M in a 
given state, the PDA will be a nondeterministic machine.) 
 
Example 
This setup allows languages like {𝑎𝑛𝑏𝑛 :𝑛 ≥ 0} to be recognized. To achieve this, our PDA must 
keep track of how many as it has read in a given string, and must compare this number to that of 
the subsequent bs. 
 
Formally, the PDA recognizing {𝑎𝑛𝑏𝑛 : 𝑛 ≥ 0} may be described as follows: 
 
Let 𝑀 = (𝐾, Σ, Γ,Δ, 𝑠,𝐹), where 

 K = {𝑠, 𝑡, 𝑟} 
 Σ = {𝑎, 𝑏} 
 Γ = {𝐴,𝐶}, where C is a special ‘marker’ stack symbol 
 𝑠 ∈ 𝐾 is the initial state 
 𝐹 = {𝑟} ⊂ 𝐾 is the singleton final state 
 Δ consists of the following seven transitions: ((𝑠, 𝜀, 𝜀), (𝑠,𝐶)), ((𝑠, 𝑎,𝐶), (𝑠,𝐴𝐶)), 

((𝑠,𝑎,𝐴), (𝑠,𝐴𝐴)), ((𝑠, 𝜀,𝐶), (𝑡,𝐶)), ((𝑠, 𝜀,𝐴), (𝑡,𝐴)), ((𝑡,𝑏,𝐴), (𝑡, 𝜀)), 
((𝑡, 𝜀,𝐶), (𝑟, 𝜀)). 

 
 These seven transitions, in English, are as follows: 

(1) If in state s with an empty stack, read nothing, push C, and remain in s. 
(2) If in state s with only C in its stack, [possibly] read a, push an A, and remain in s. 
(3) If in state s with an A on top of the stack, read a, push another A, and remain in s. 
(4) If in state s with only C in its stack, [possibly] read nothing, leave the stack unaltered, and 

move to state t. 
(5) If in state s with an A on top of the stack, [possibly] read nothing, leave the stack 

unaltered, and move to state t. 
(6) If in state t with an A on top of the stack, [possibly] read b, pop A, and remain in t. 
(7) If in state t with only C in its stack, read nothing, pop C, and move to state r. 

 
Note 
A machine M accepts a string w iff, by reading w, M can reach a state (𝑝, 𝜀, 𝜀) (where 𝑝 ∈ 𝐹) by 
some set of transitions. We will make this notion more precise later. 
 
Because of the properties of this nondeterministic machine, it will sometimes fail to accept a 
word from {𝑎𝑛𝑏𝑛 : 𝑛 ≥ 0}. But that is all right: we say that a nondeterministic automaton M 
accepts a language L just in case it is possible for M to accept the words in L, which is clearly the 
case here. ∎ 
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Eventually, we will prove (half of) the following important Theorem: The class of languages 
accepted by pushdown automata is exactly the class of context-free languages. But first, let’s get 
some things straight. 
 
Definitions 

 A configuration of a PDA, 𝑀 = (𝐾, Σ, Γ,Δ, 𝑠,𝐹), is a member of the set 𝐾 × Σ × Γ∗. The 
first component is the present state of M, the second is the portion of the input yet to be 
read, and the third is the contents of the stack, read top-down. 

 For every transition ((𝑝,𝑢,𝛽), (𝑞, 𝛾)) of a PDA M, and for every 𝑥 ∈ Σ∗ and 𝛼 ∈ Γ∗, we 
define (𝑝,𝑢𝑥,𝛽𝛼) ⊢𝑀 (𝑞, 𝑥,𝛾𝛼). ⊢𝑀  is the relation ‘yie lds in one step’. It holds between 
two configurations iff they can be represented in this form, for some transition in M. 

 We denote the transitive, reflexive closure of the above relation (i.e., ‘yields’) by ⊢𝑀∗ . 
 Now we can precisify an earlier remark. We say M accepts a string 𝑤 ∈ Σ∗ iff 

(𝑠,𝑤, 𝜀) ⊢𝑀∗ (𝑝, 𝜀, 𝜀) for some final state 𝑝 ∈ 𝐹. 
 Any sequence of configurations 𝐶0,𝐶1,…   ,𝐶𝑛  such that 𝐶𝑖 ⊢𝑀 𝐶𝑖+1 for 𝑖 = 0,… , 𝑛 − 1 is 

called a computation by M of length n, or with n steps. 
 The language accepted by M , L(M), is the set of all strings accepted by M. 

 
En Route to the Theorem 
Remember from before that if 𝐺 = (𝑉,Σ,𝑅,𝑆) is a context-free grammar, then 𝑤 ∈ 𝐿(𝐺) iff 
𝑤 ∈ Σ∗ and there is a derivation 

𝑆 ⟹ 𝑤1 ⟹𝑤2 ⟹⋯⟹ 𝑤𝑛−1 ⟹𝑤 
for some strings 𝑤1,…   ,𝑤𝑛−1 ∈ 𝑉∗ (𝑛 > 0).  
 
Here we are dealing with derivations in a CFG again. Remember what they look like? Recall our 
earlier grammar G (p. 1), whose production rules were (1) 𝐴 → 𝐴𝐴, (2) 𝐴 → 𝑎𝐴, and (3) 𝐴 → 𝜀. 
Now consider the string aAA, and suppose we want to apply rule (2) to this string. This can be 
done in two ways (since the grammar is, after all, context-free!): either 𝑎𝐴𝐴 → 𝑎𝑎𝐴𝐴 or 
𝑎𝐴𝐴 → 𝑎𝐴𝑎𝐴. In the first derivation, we’ve replaced the leftmost occurrence of A, while in the 
second derivation we’ve replaced the rightmost occurrence of A. 
 
We can classify derivations by their resemblance to one of the two derivations above. In 
particular, if the nonterminal symbol replaced at every step of a given derivation is the leftmost 
nonterminal symbol in the string, we call it a leftmost derivation. ‘α is leftmost derivable from 

S’ is written 𝑆 ∗𝐿⇒ 𝛼. 
 
Why is leftmostness an interesting property for a derivation to have? Well, it turns out that… 
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Lemma 1 (Equivalence of Derivations and Leftmost Derivations) 
For any context-free grammar 𝐺 = (𝑉,Σ,𝑅, 𝑆) and any string 𝑤 ∈ Σ∗ , w is derivable in G via a 
leftmost derivation iff w is derivable in G at all. 
(That is, every derivation is equivalent to some leftmost derivation, and vice versa.) I omit the 
proof, one direction of which is rather complex. The other direction, of course, is trivial—
obviously, every leftmost derivation is a derivation simpliciter. 
 
Why is this useful? Well, it allows us to restrict our attention to a subset of the derivations of a 
given G (those that are leftmost) without loss of generality. That will be useful in tackling the 
following theorem, which we will now state and partially prove: 
 
Theorem (CFL = PDA) 
The class of languages accepted by pushdown automata is exactly the class of context-free 
languages. 
 
Proof 
Part 1 of the proof involves demonstrating the following lemma. 
 
Lemma 2 (CFL⊆ PDA) 

Each context-free language is accepted by some pushdown automaton. 
 
Proof of Lemma 2 
Let 𝐺 = (𝑉,Σ,𝑅, 𝑆) be a CFG; we need to construct a PDA M such that L(M)=L(G). Let this 
𝑀 = ({𝑝,𝑞},Σ,Γ = 𝑉,Δ,𝑝, {𝑞}). Notice: 

 The machine has just two states, p and q, of which p is the start state and q is the (lone) 
final state.  

 Γ = 𝑉. That is, M’s set of stack symbols is identical to G’s set of terminals and 
nonterminals. 

 We define the transitions in Δ as follows: 
𝟏.  R(𝑝, 𝜀, 𝜀), (𝑞, 𝑆)S 
𝟐.  ((𝑞, 𝜀,𝐴), (𝑞, 𝑥)) for each rule 𝐴 → 𝑥 in 𝑅. 
𝟑.  R(𝑞,𝑎,𝑎), (𝑞, 𝜀)S for each 𝑎 ∈ Σ. 

 
These transitions, in English, say: 
1. If in state p with an empty stack, read nothing, push S, and move to state q. 
2. If in state q with some nonterminal symbol A on top of the stack, push any symbol x 

for which there is a production rule 𝐴 → 𝑥, and remain in state q. 
3. If in state q with some terminal symbol a on top of the stack, pop a, read a, and 

remain in state q. 
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Earlier we defined accepting a string w for an arbitrary PDA. Applying that definition to 
the present machine, we see that M accepts some string w iff (𝑝,𝑤, 𝜀) ⊢𝑀∗ (𝑞, 𝜀, 𝜀); that 
is, if the initial state of M with input w yields the configuration (𝑞, 𝜀, 𝜀). 
To prove the lemma (i.e., that L(M))=L(G) for the M we have defined), we prove the 
following two claims. 
 

 Claim 1. If 𝑆 ∗𝐿⇒ 𝛼1𝛼2, where 𝛼1 ∈ Σ∗ and 𝛼2 ∈ (𝑉 − Σ)𝑉∗ ∪ {𝜀}, then 
(𝑞,𝛼1, 𝑆) ⊢𝑀∗ (𝑞, 𝜀,𝛼2). (That is, if the string 𝛼1𝛼2 is derivable from the start symbol in 
G, then the state (𝑞, 𝜀,𝛼2) is computable from the start state in M.) 

 Claim 2. If (𝑞,𝛼1, 𝑆) ⊢𝑀∗ (𝑞, 𝜀,𝛼2), where 𝛼1 ∈ Σ∗ and 𝛼2 ∈ 𝑉∗, then 𝑆 ∗𝐿⇒ 𝛼1𝛼2. (That is, 
the converse of Claim 1.) 

 
These claims jointly imply the lemma, since Claim 1 establishes that 𝛼1𝛼2 ∈ 𝐿(𝑀) if it is in 
L(G), while Claim 2 establishes that 𝛼1𝛼2 ∈ 𝐿(𝐺) if it is in L(M). Hence, by taking 𝛼2 = 𝜀, it 
follows that a given string α is in L(G) iff it is in L(M). We prove both claims by induction. 
 
Proof of Claim 1 

Suppose that 𝑆 ∗𝐿⇒ 𝛼1𝛼2, where 𝛼1 ∈ Σ∗ and 𝛼2 ∈ (𝑉 − Σ)𝑉∗ ∪ {𝜀}. The proof proceeds by 
induction on the length of a derivation of α from S. 
 
Basis Case. If the derivation is of length 0, then 𝑆 = 𝛼, and hence 𝛼1 = 𝜀 and 𝛼2 = 𝑆. 
Trivially, then, (𝑞,𝛼1, 𝑆) ⊢𝑀∗ (𝑞, 𝜀,𝛼2), since the LHS and RHS configurations are the same. 
 

Induction Hypothesis. Assume that if 𝑆 ∗𝐿⇒ 𝛼1𝛼2 by a derivation of length n or less, with 𝑛 ≥ 0, 
then (𝑞,𝛼1,𝑆) ⊢𝑀∗ (𝑞, 𝜀,𝛼2). 
 
Inductive Step. Let  

𝑆 = 𝑢0
𝐿⇒ 𝑢1

𝐿⇒… 𝐿⇒𝑢𝑛+1 = 𝛼 
 
be a leftmost derivation of α from S, and let 𝛼 = 𝛼1𝛼2 as specified. Clearly, 𝑢𝑛  has at least one 
nonterminal (since 𝑢𝑛+1 is derived from 𝑢𝑛). Hence 𝑢𝑛 = 𝛽1𝐴𝛽2 and 𝑢𝑛+1 = 𝛽1𝛾𝛽2, where 
𝛽1 ∈ Σ∗ , 𝐴 ∈ 𝑉 − Σ, and 𝐴 → 𝛾. (Although Lewis doesn’t say so, it is evident from context that 
𝛽2 ∈ (𝑉 − Σ)𝑉∗ ∪ {𝜀}.) By the induction hypothesis,  
 

(𝑞,𝛽1, 𝑆) ⊢𝑀∗ (𝑞, 𝜀,𝐴𝛽2), (1) 
 
but since 𝐴 → 𝛾, ((𝑞, 𝜀,𝐴), (𝑞, 𝛾)) is a type-2 transition of M; so 
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(𝑞, 𝜀,𝐴𝛽2) ⊢𝑀 (𝑞, 𝜀,𝛾𝛽2). (2) 
 

Now 𝛼 is 𝛽1𝛾𝛽2, and is also 𝛼1𝛼2. So we can write 𝛼1 as 𝛽1𝛿 for some 𝛿 ∈ Σ∗, such that 
𝛿𝛼2 = 𝛾𝛽2. Therefore 
 

(𝑞, 𝛿,𝛾𝛽2) ⊢𝑀∗ (𝑞, 𝜀,𝛼2) (3) 
 

by a series of type-3 transitions, each of which pops a symbol of 𝛿 until only the string 𝛼2 
remains. Hence, combining (1), (2), and (3), we have the sequence of computations 
 

(𝑞,𝛼1,𝑆) = (𝑞,𝛽1𝛿,𝑆) 
⊢𝑀∗ (𝑞, 𝛿,𝐴𝛽2) 
⊢𝑀∗ (𝑞, 𝛿, 𝛾𝛽2) 
⊢𝑀∗ (𝑞, 𝜀,𝛼2), 

 
which completes the inductive step and the proof of Claim 1. 
 
Proof of Claim 2 
Now suppose, conversely, that (𝑞,𝛼1, 𝑆) ⊢𝑀∗ (𝑞, 𝜀,𝛼2), where 𝛼1 ∈ Σ∗ and 𝛼2 ∈ 𝑉∗; we need to 

show that 𝑆 ∗𝐿⇒ 𝛼1𝛼2. This time we proceed by induction on the length of a computation by M. 
 
Basis Case. If (𝑞,𝛼1, 𝑆) ⊢𝑀∗ (𝑞, 𝜀,𝛼2) in zero steps—that is, if (𝑞,𝛼1,𝑆) = (𝑞, 𝜀,𝛼2)— then 

𝛼1 = 𝜀,𝛼2 = 𝑆, and obviously 𝑆 ∗𝐿⇒ 𝛼1𝛼2. 
 
Induction Hypothesis. If (𝑞,𝛼1, 𝑆) ⊢𝑀∗ (𝑞, 𝜀,𝛼2) by a computation of n steps or fewer, 𝑛 ≥ 0, 

then 𝑆 ∗𝐿⇒ 𝛼1𝛼2. 
 
Inductive Step. Suppose that (𝑞,𝛼1,𝑆) ⊢𝑀∗ (𝑞, 𝜀,𝛼2) in n +1 steps. Then, for some 𝛽 ∈ Σ∗ ,𝛾 ∈
Γ∗, (𝑞,𝛼1,𝑆) ⊢𝑀∗ (𝑞,𝛽,𝛾) in n steps, and (𝑞,𝛽, 𝛾) ⊢𝑀∗ (𝑞, 𝜀,𝛼2). This last move is the result of a 
type-2 or type-3 transition. 
 
Suppose the last transition was type-2. Then 𝛽 = 𝜀, 𝛾 = 𝐴𝛾1, and 𝛼2 = 𝛿𝛾1 for some 𝐴 ∈ 𝑉 −
Σ, 𝛾1 ∈ 𝑉∗, and some rule 𝐴 → 𝛿. Since 𝑆 ∗𝐿⇒ 𝛼1𝐴𝛾1 by the induction hypothesis, 𝑆 ∗𝐿⇒ 𝛼1𝛿𝛾1 =
𝛼1𝛼2. 
 
Suppose the last transition was type-3. Then 𝛽 = 𝑎, a terminal symbol, and 𝛾 = 𝑎𝛼2. Then 
𝛼1 = 𝛿𝑎 for some 𝛿 ∈ Σ∗, and (𝑞,𝛿, 𝑆) ⊢𝑀∗ (𝑞, 𝜀,𝑎𝛼2) in n steps, so by the induction hypothesis 

𝑆 ∗𝐿⇒ 𝛿𝑎𝛼2 = 𝛼1𝛼2.∎ 
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That concludes the proof of Lemma 2 (CFL ⊆ PDA), and the first half of the Theorem (CFL = 
PDA). The second half of the theorem is longer and more complicated, but as one might expect it 
too involves a pair of proofs by induction. Unfortunately, it is not even possible to give a general 
idea of the proof without going into some detail, as it requires the definition and construction of a 
novel type of machine (a simple PDA), and by now the hour is late. 


